Image from Google Jackets

Fluorescent analogs of biomolecular building blocks : design and applications / edited by Marcus Wilhelmsson, Yitzhak Tor.

Contributor(s): Material type: TextTextPublisher: Hoboken, NJ : Wiley, 2016Description: 1 online resource (475 pages)Content type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9781119179320
  • 1119179327
Subject(s): Genre/Form: Additional physical formats: Print version:: Fluorescent Analogs of Biomolecular Building Blocks : Design and Applications.DDC classification:
  • 543/.56 23
LOC classification:
  • QP519.9.F56
Online resources:
Contents:
Cover; Title Page; Copyright; Contents; List of Contributors; Preface; Chapter 1 Fluorescence Spectroscopy; 1.1 Fundamentals of Fluorescence Spectroscopy; 1.2 Common Fluorescence Spectroscopy Techniques; 1.2.1 Steady-State Fluorescence Spectroscopy; 1.2.2 Time-Resolved Fluorescence Spectroscopy; 1.2.3 Fluorescence Anisotropy; 1.2.4 Resonance Energy Transfer and Quenching; 1.2.5 Fluorescence Microscopy and Single Molecule Spectroscopy; 1.2.6 Fluorescence-Based in vivo Imaging; 1.3 Summary and Perspective; References.
Chapter 2 Naturally Occurring and Synthetic Fluorescent Biomolecular Building Blocks; 2.1 Introduction; 2.2 Naturally Occurring Emissive Biomolecular Building Blocks; 2.3 Synthetic Fluorescent Analogs of Biomolecular Building Blocks; 2.3.1 Synthetic Emissive Analogs of Membranes Constituents; 2.3.2 Synthetic Emissive Analogs of Amino Acids; 2.3.3 Synthetic Emissive Analogs of Nucleosides; 2.4 Summary and Perspective; References; Chapter 3 Polarized Spectroscopy with Fluorescent Biomolecular Building Blocks; 3.1 Transition Moments; 3.2 Linear Dichroism; 3.3 Magnetic Circular Dichroism.
3.4 Forster Resonance Energy Transfer (FRET); 3.5 Fluorescence Anisotropy; 3.6 Fluorescent Nucleobases; 3.7 Fluorescent Peptide Chromophores; 3.8 Site-Specific Linear Dichroism (SSLD); 3.9 Single-Molecule Fluorescence Resonance Energy Transfer (smFRET); 3.10 Single-Molecule Fluorescence-Detected Linear Dichroism (smFLD); References; Chapter 4 Fluorescent Proteins: The Show Must go on!; 4.1 Introduction; 4.2 Historical Survey; 4.3 Photophysical Properties; 4.3.1 Absorption Properties and Color Hue Modification; 4.3.2 Chromophore Formation; 4.3.3 Fluorescence Color and Dynamics.
4.3.4 Directional Properties along with Optical Transitions; 4.3.5 Energy Transfer and Energy Migration; 4.4 Photochemical Reactions; 4.4.1 Excited-state Proton Transfer (ESPT); 4.4.2 Isomerization Reactions: Reversible Photoswitching; 4.4.3 Photoconversion: Irreversible Bond Rupture; 4.4.4 Other Photochemical Reactions; 4.5 Ion Sensitivity; 4.5.1 Ground-State Equilibria of Protonation States; 4.5.2 Quenching by Small Ions; 4.6 Relation Microscopy-Spectroscopy for Fluorescent Proteins; 4.6.1 Brightness Alteration from Cuvette to Microscopic Experiments; 4.6.2 Lessons from Microspectrometry.
4.6.3 Tools for Advanced Microscopic Techniques; 4.7 Prospects and Outlook; Acknowledgments; References; Chapter 5 Design and Application of Autofluorescent Proteins by Biological Incorporation of Intrinsically Fluorescent Noncanonical Amino Acids; 5.1 Introduction; 5.2 Design and Synthesis of Fluorescent Building Blocks in Proteins; 5.2.1 Extrinsic Fluorescent Labels; 5.2.2 Intrinsic Fluorescent Labels; 5.2.3 Extrinsic Labels Chemically Ligated using Cycloaddition Chemistry; 5.2.4 Modification of the Genetic Code to Incorporate ncAAs; 5.3 Application of Fluorescent Building Blocks in Proteins.
5.3.1 Azatryptophans.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Print version record.

Cover; Title Page; Copyright; Contents; List of Contributors; Preface; Chapter 1 Fluorescence Spectroscopy; 1.1 Fundamentals of Fluorescence Spectroscopy; 1.2 Common Fluorescence Spectroscopy Techniques; 1.2.1 Steady-State Fluorescence Spectroscopy; 1.2.2 Time-Resolved Fluorescence Spectroscopy; 1.2.3 Fluorescence Anisotropy; 1.2.4 Resonance Energy Transfer and Quenching; 1.2.5 Fluorescence Microscopy and Single Molecule Spectroscopy; 1.2.6 Fluorescence-Based in vivo Imaging; 1.3 Summary and Perspective; References.

Chapter 2 Naturally Occurring and Synthetic Fluorescent Biomolecular Building Blocks; 2.1 Introduction; 2.2 Naturally Occurring Emissive Biomolecular Building Blocks; 2.3 Synthetic Fluorescent Analogs of Biomolecular Building Blocks; 2.3.1 Synthetic Emissive Analogs of Membranes Constituents; 2.3.2 Synthetic Emissive Analogs of Amino Acids; 2.3.3 Synthetic Emissive Analogs of Nucleosides; 2.4 Summary and Perspective; References; Chapter 3 Polarized Spectroscopy with Fluorescent Biomolecular Building Blocks; 3.1 Transition Moments; 3.2 Linear Dichroism; 3.3 Magnetic Circular Dichroism.

3.4 Forster Resonance Energy Transfer (FRET); 3.5 Fluorescence Anisotropy; 3.6 Fluorescent Nucleobases; 3.7 Fluorescent Peptide Chromophores; 3.8 Site-Specific Linear Dichroism (SSLD); 3.9 Single-Molecule Fluorescence Resonance Energy Transfer (smFRET); 3.10 Single-Molecule Fluorescence-Detected Linear Dichroism (smFLD); References; Chapter 4 Fluorescent Proteins: The Show Must go on!; 4.1 Introduction; 4.2 Historical Survey; 4.3 Photophysical Properties; 4.3.1 Absorption Properties and Color Hue Modification; 4.3.2 Chromophore Formation; 4.3.3 Fluorescence Color and Dynamics.

4.3.4 Directional Properties along with Optical Transitions; 4.3.5 Energy Transfer and Energy Migration; 4.4 Photochemical Reactions; 4.4.1 Excited-state Proton Transfer (ESPT); 4.4.2 Isomerization Reactions: Reversible Photoswitching; 4.4.3 Photoconversion: Irreversible Bond Rupture; 4.4.4 Other Photochemical Reactions; 4.5 Ion Sensitivity; 4.5.1 Ground-State Equilibria of Protonation States; 4.5.2 Quenching by Small Ions; 4.6 Relation Microscopy-Spectroscopy for Fluorescent Proteins; 4.6.1 Brightness Alteration from Cuvette to Microscopic Experiments; 4.6.2 Lessons from Microspectrometry.

4.6.3 Tools for Advanced Microscopic Techniques; 4.7 Prospects and Outlook; Acknowledgments; References; Chapter 5 Design and Application of Autofluorescent Proteins by Biological Incorporation of Intrinsically Fluorescent Noncanonical Amino Acids; 5.1 Introduction; 5.2 Design and Synthesis of Fluorescent Building Blocks in Proteins; 5.2.1 Extrinsic Fluorescent Labels; 5.2.2 Intrinsic Fluorescent Labels; 5.2.3 Extrinsic Labels Chemically Ligated using Cycloaddition Chemistry; 5.2.4 Modification of the Genetic Code to Incorporate ncAAs; 5.3 Application of Fluorescent Building Blocks in Proteins.

5.3.1 Azatryptophans.

Includes bibliographical references and index.

There are no comments on this title.

to post a comment.
Implemented & Customized by: BestBookBuddies

Powered by Koha